
Abstract

This paper addresses the problem of estimating range-
varying parameters of the height-dependent index of
refraction over the sea surface in order to predict ducted
microwave propagation loss. Refractivity estimation is
performed using a Markov model for microwave radar
clutter returns from the sea surface.  Specifically, the
parabolic approximation for numerical solution of the
wave equation is used to formulate the problem within a
non-linear recursive Bayesian state estimation
framework.  Solution for the maximum a posteriori (MAP)
sequence of range-varying refractivity parameters, given
log-amplitude clutter versus range data, is achieved using
a technique based on the Viterbi algorithm.  Simulation
and real data results based on experiments performed off
Wallops Island, Virginia are presented which quantify the
technique’s ability to predict propagation loss at 3 Ghz.

1. INTRODUCTION

The refractivity structure associated with the capping
inversion of the marine atmospheric boundary layer often
causes ducted microwave propagation [1], [2]. Synoptic
monitoring of ducting conditions by direct measurement
of the three-dimensional humidity and temperature
profiles, which determine refractivity, is difficult and
expensive [3].  Thus this paper addresses the problem of
estimating refractivity from clutter (RFC). In previous
work, simple global parameterizations of the range and
height dependent refractivity profile have been fitted to
clutter returns, producing some promising real data results
in several instances [4].  However, in more complex
range-varying scenarios, the number of global parameters
required becomes too large to handle efficiently.  In this
paper, the parabolic approximation for numerical solution
of the wave equation is used to formulate the more
general range-varying refractivity estimation problem
within a non-linear recursive Bayesian state estimation
framework.  The potential advantage of this state-space
formulation of RFC is that it can be solved efficiently
using sequential recursive Bayesian methods.  This
approach also imposes smoothness constraints on

physically-realizable refractivity parameters. As with
other RFC methods, the final objective is to predict
propagation loss as a function of range and height which
can be achieved by numerical solution of the wave
equation using the estimated refractivity profile.  Such
propagation loss predictions are known as “coverage
diagrams” and are often used as tactical decision aids to
naval radar operators.

2. MODEL FORMULATION

Numerical solution for the electromagnetic field at
range, x, and height, z, due to ducted propagation in
inhomogeneous tropospheric conditions is commonly
performed by using the parabolic equation (PE)
approximation of the wave equation. In particular, the
split-step Fourier PE solution [5] recursively computes the
field, 1( , )ku x z+ , at range, 1k kx x xδ+ = + , as a function
of  height, z, given the solution at range, x, using a linear
transformation given by:
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which amounts to assuming Fresnel diffraction through a
thin phase-screen at each range step. The height-
dependent refractivity profile between  and k kx x xδ+ , is
denoted, η , which enters into the phase screen term,
which is the first complex exponential in (1). Other
symbols in (1) are the radius of the earth, ae , and the
spatial Fourier transform operator, F, taken with respect to
height, z.  Consider now the case where the refractivity
profile, ( , , )k kz xη g , is modeled as being a non-linear
function of an uncertain random parameter vector, kg ,
whose range dependence is Markovian, i.e.

1k k k+g = Ag + w (2)

where the known transition matrix A constrains the
smoothness of the parameter variation across small range
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steps and the independent random vectors, kw , model
uncertain variations between ranges. Now defining the
vector of complex field values over height,

1[ ( , ),... ( , )]Tk k N ku z x u z x=u , at range step k, equation
(1) can be written as:

1 ( , )k k k+ =u f u g (3)

where the vector-valued function f ( , )⋅ ⋅  represents the
split-step Fourier solution for the field.  Putting

 and k ku g of (2) and (3) into a single state vector,

[ ], T
k k k=x g u , the electromagnetic field and range-

varying refractivity parameters are constrained by a non-
linear set of equations given by:
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In this paper, w k  is modeled as zero-mean, Gaussian with
covariance matrix �w . In the above formulation, the
process noise is only used in the model for the refractivity
variables. Propagation of a weak forward random
scattered field could, in principle, be handled by also
including an additive process noise component in the state
equations for ku . In the current application, the initial
condition, 0u , can assumed to be known from the antenna
pattern of the radar.  Historical observations and possibly
an in situ measurement of refractivity at the radar can be
used to form a prior distribution on og .

Clutter returns from the sea surface can be expressed
in terms of kx  by letting the matched-filtered radar return

of the nth  pulse at the k th slant range, denoted by f kn ( ) ,
be expressed as:

( ) ( ) ( ) ( )n n k nf k a k L kν= +x (5)

where a kn ( ) is a complex, zero-mean, white Gaussian

process with variance, σ a k2 ( ) , representing local surface
backscatter and ( )kL x is the magnitude of the field
calculated at a nominal sea surface height.  The receiver
noise, ( )nv k , is modeled here as additional zero-mean

complex white Gaussian noise process with variance, 2
vσ .

In effect, (5) models the clutter return as the propagation
loss modulated by a random “speckle noise”, whose
variance is the backscatter cross-section of the sea surface,
in additive noise. In the forward problem, the range-
dependent refractivity parameter sequence, kg , could be
used as input to a PE propagation model to compute the
propagation loss. The goal here, however, is to estimate

the sequence of refractivity parameters, kg , given an
observation of microwave radar clutter return statistics.

A common statistic of the received data that is
available in many radars is the pulse-position indicator
(PPI) output, ky .  The PPI is typically formed in the radar
by averaging N matched-filtered, log-amplitude pulses

such that  
1

20 log ( )
N

k n
n

y f k
N =

= � .  For the model of (5), it

can be shown [4] that the PPI output for large N,
conditioned on kx , is approximately Gaussian distributed

with mean 2 210log ( ) ( ) 0.116a k vk Lσ σ� �+ +
� �

x  and

variance, which is a known constant, 2
yσ .  Thus using (5)

and noting that 1 1( ) H H
k k kL =x e x x e  where

1 [1,0,...,0]T=e ,  the PPI clutter return can be modeled as:

( )k k ky β ε= +x (6)

where
( ) ( )2

1 1
10( ) ln ( ) .

ln 10
H H

k k k a vk constβ σ σ= + −x e x x e

and the kε are Gaussian random variables with constant

variance, 2
yσ .  Given the non-linear state-space

formulation of (4) and (6), the objective is now to estimate
the sequence of refractivity parameters, kg , given an
observation of microwave radar returns, ky .

3. RFC VIA PARTICLE FILTERING

A classical solution to the non-linear RFC state
estimation problem would  involve linearization of
equations (4) and (6) and solution using the extended
Kalman filter (EKF).  Unfortunately, however, the
appearance of η  in the complex exponential of (1) makes
the linearized model prone to instability.  In this paper,
therefore, the maximum a posteriori (MAP) estimate of
range-dependent refractivity is computed using a Monte
Carlo particle filter approximation to the Viterbi
algorithm.  The basic idea behind particle filtering is that
the posterior distribution of the state sequence given the
data can be represented by a set of random realizations (or
“particles”) instead of a continuous high-dimensional
function. This approach was originally developed in
Bayesian statistics literature [6, 7], but is beginning to
receive attention in the signal processing literature [8,9,
10].

The particle filtering approach taken here follows the
approach described in [10].  Suppose at range step, k,
random realizations, 1( ),  1,...,k i i M− =x , are available
from probability density, 1 1 1( | ,..., )k kp x y y− − .  Then



realizations or particles, * ( )kx i , from 1 1( | ,..., )k kp y y −x
can be obtained by using each of these particles as input to
the state equation of (4) together with random samples

( )k iw  drawn from the Normal distribution, (0, )wN Σ .
The PPI clutter measurement, ky , at range bin, k , is then
used to compute the Viterbi path weight by performing:

1 1

( ) log ( | ( ))
            max [ ( ) log ( ( ) | ( ))]

k k k

j k k k

W i p y x i
W j P x i x j− −

= +
+

(7)

where
1 11 ,..., 1 1 1 1( ) max (log ( ,..., | ,..., )

kk x x k kW j p x x y y
−− − −=

and the transition probability distribu-
tion, 1( ( ) | ( ))k kp x i x j− , is complex Gaussian with mean

1( )kx j−  and singular covariance matrix with �w  in its
upper left-hand block. The PPI clutter measurement, ky ,
at range bin, k , can also be used to update the prior for
the current range cell by evaluating the likelihood of each
particle:
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which is a discrete approximation to the a posteriori
probability density, 1( | ,... )k kp y yx , i.e. the probability

mass at the sample points, * ( )k ix . Samples from

1( | ,... )k kp y yx  can now be approximated by bootstrap
resampling M times from this discrete distribution such
that *Pr{ ( ) ( )}k k ix j x i q= =  [6]. For the RFC problem
formulation:
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since the log-amplitude PPI data is nearly Gaussian for
large N.  The MAP estimate of the refractivity parameter
sequence at each range step is finding the argmax of

( )kW i  in (7) and then tracing back through the trellis.

The above procedure uses a data adaptive random
grid approximation to the a posteriori density of the state.
This importance sampling approach can become
degenerate, i.e. have many redundant particles, for highly
multi-modal 1 1 1( | ,..., )k kp x y y− − which is the case in
RFC.  Degeneracy was overcome here by not resampling
from (8) but rather simply propagating the particles via
the state evolution of (4). This sacrifices asymptotic
convergence for better performance with a limited number
of particles and modest computational complexity.

4. RESULTS USING WALLOPS ISLAND DATA

To test the proposed refractivity estimation method,
simulated PPI clutter data was generated based on real
data from the SPANDAR radar at Wallops Island
Virginia.  The operating frequency was 2.85 GHz. with an
antenna at a height of approximately 30 meters.  The 4-
element unknown parameter vector, kg , consisted of the
heights and modified refractivity values, nominally at top
and bottom of the trapping layer, in a standard tri-linear
refractivity profile [cf. e.g. 4]. The kg  were range-
varying over 1000 m.xδ =  increments according to (4).
The simulated and real PPI clutter return, ky , versus
range with N=128 snapshots are shown as the thickest
solid lines in bottom panel of Figures 1 and 2,
respectively. Ducting over the sea is responsible for the
significant clutter observed at ranges beyond 20 km. The
prior distribution for the height parameters was assumed
uniformly distribution from 15 to 200 meters.  The prior
on the M-values constrained the total M-deficit to less
than 65 M units and never more upward refracting than
the standard. The backscatter cross-section is assumed to
be constant and known over the entire range of interest in
the simulation. The transition matrix, A, in (2) is the
identity with process noise covariance chosen so as to be
able to track duct height changes of a couple of meters per
range step. In Figures 1 and 2, the true refractivity profiles
are the solid black vertical traces in the top panels,
respectively.  Similarly, the MAP profile estimates are
indicated by dashed vertical traces.  The ground-truth and
RFC-estimated coverage diagrams for simulated and real
data are shown in the second and third panels of Figures 1
and 2, respectively. Note that RFC estimates closely track
the ground-truth values in both simulation and with real
data. The MAP RFC estimate was performed using
M=400 particles with a run-time of less than 30 minutes
on a 500 MHz Pentium computer.  More quantitative
comparison of the accuracy of RFC is given in Table 1
where the mean absolute propagation loss error is given
on a per trial basis for a set of 12 clutter maps.  The
average absolute error between coverage predictions made
using RFC versus helicopter-based refractivity
measurements compares favorably with those achieved
using a single range-independent sounding made at the
shore, midpoint, or 60 km. out at sea.
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Table 1: Propagation Loss Prediction Errors

Trial RFC Helo RFC Shore Midpoint Sea
9 5.19 6.93 5.82 3.50 5.39 5.53

10 6.24 7.94 4.14 3.50 5.39 5.53
11 6.13 6.87 7.94 3.50 5.39 5.53
12 4.91 8.50 5.19 2.81 3.60 4.94
13 5.95 9.02 6.36 2.81 3.60 4.94
14 6.80 9.22 4.54 7.68 7.01 8.23
15 6.05 9.31 5.89 7.64 6.97 8.19
18 5.91 8.23 7.26 8.00 7.80 8.98
19 5.55 7.21 10.59 8.00 7.80 8.98
22 6.82 6.76 8.61 5.47 6.87 5.91
23 9.87 8.97 7.85 5.47 6.87 5.91
24 5.90 6.93 5.68 5.47 6.87 5.91

Average 6.28 7.99 6.66 5.32 6.13 6.55

PPI (dB) Transmission Loss (dB)

Figure 1: Simulated Refractivity, Coverage Diagrams,
and Clutter for the Wallops Island Experiment
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 Figure 2: Real-Data Refractivity, Coverage Diagrams,
and Clutter for the Wallops Island Experiment
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